Better yields in tomato production are possible in spite of reductions in nitrogen levels.

Better yields in tomato production are possible in spite of reductions in nitrogen levels. Biostimulines and microorganisms improve the vitality and resistance of crops. Overall nitrogen levels, both NH4+ and NO3-, can be reduced by almost 20 per cent on average while at the same time increasing yields.

Koppert’s Ed Moerman, Natu-Gro knowledge & System Development, gave a presentation about the reduced use of nitrogen with top results in tomatoes.

His presentation was part of the official conference program of Fruit Logistica 2015 in Berlin. He explained that by running an ammonnium and nitrate energy intensive production plan one limits emission to groundwater and the air. There is, after all, free nitrogen available in the air. It will also result in less pests and diseases. You will need less agro chemicals which guarantees better food health. That translates into top results, he added. Which are?
• Uncompromised production quality;
• Zero-residue;
• More efficient plant nutrition; and
• Robust, resilient cultivation.
But, producers need to undergo a paradigm shift first to successfully practise such a programme. Traditionally producers react on symptoms with a “Control Kill” mind set.The better method would be to:
• increase the biodiversity around the roots with known micro organisms;
• boost the root growth;
• support microbial life in the root zone;
• respect organisms in the rhizospere;
• stimulate the metabolic processes in the plant; and
• reduce the abiotic stress.

When these methods are followed and handled properly the soil’s food web turns the Nitrate-N into amino acids which the plant absorbs easier and at a lower energy cost which makes a lower mineral nitrate application possible. This contributes to a higher ratio Brix/nitrate in foliage which makes the foliage less attractive to pests and diseases, reducing the need for agro chemicals.

Studie op Verticillium verwelk

Grondgedraagde swamme veroorsaak Verticillium verwelk, Verticillium dahliae, Verticillium albo-atrum en Verticillium tricorpus. Deur die jare is kultivars egter ontwikkel wat weerstand het teen Verticillium albo-atrum, en Verticillium tricorpus word as ‘n minder agressiewe organisme beskou, dus is die hoof veroorsakende organisme Verticillium dahliae.

Hierdie spesie kan egter in twee rasse onderskei word ten opsigte van ‘n weerstandsgeen bekend as die Ve geen. Verticillium dahliae ras 1 is vir die eerste keer in Suid-Afrika aangeteken in 1989 en tamatie kultivars is daarna geteel vir weerstand teen hierdie ras.

Daar het egter ‘n tweede ras ontstaan bekend as V. dahliae ras 2 en daar is tans geen kultivar beskikbaar wat weerstand teen hierdie ras het nie.

Die aalwurm, Pratylenchus penetrans, kom voor in assosiasie met V. dahliae in verskeie ander gewasse. Daar is gevind dat hierdie letsel aalwurm en die verwelkingswam mekaar komplimenteer as hulle saam voorkom en dat dit lei tot ’n toename in simptome en groter oesverliese.

Kenmerkende simptome van Verticillium verwelk is vergeling van blare van die plant wat onder begin en dan op teen die plant versprei soos wat die siekte verder ontwikkel. Die blare kan ’n kenmerkende V-simptoom ontwikkel soos wat die blare nekroties word van die punt af. As die stam van die ge-afekteerde plant oopgesny word, is die vaatweefsel heeltemal bruin verkleur en dit is dan dié blokkering van die vaatweefsel wat lei tot die verwelksimptome en moontlike afsterwing van die plant en gevolglike oesverlies.

Die siklus van Verticillium verwelk begin in die grond waar die swam oorleef as dormante oorlewingstrukture bekend as mikrosklerotia. Mikrosklerotia kan in die grond oorleef in plantreste of in grond wat braak lê, vir ‘n tydperk van tot 15 jaar. In ander gewasse is daar ‘n sterk ooreenkoms gevind tussen die vlakke van mikrosklerotia en die hoeveelheid verwelkingsiekte wat voorkom sowel as die intensiteit van die siekte. Daar is egter nog baie min navorsing gedoen om die hoeveelheid mikrosklerotia te verbind met die hoeveelheid siekte en die intensiteit van siekte in tamatieplante en om drempelwaardes te bepaal vir die siekte. Daar is wel in Amerika gevind dat ‘n vlak van ses mikrosklerotia per gram grond daartoe gelei het dat 100 persent van die plante in daardie betrokke land Verticillium verwelk ontwikkel het. Hierdie was egter net een studie en baie meer navorsing sal onderneem moet word voordat ‘n akkurate drempelwaarde verkry kan word.

Die Landbounavorsingsraad (LNR) onderneem tans ’n studie waarin die kwantifisering van V. dahliae en aalwurms van die genus Pratylenchus uit grondmonsters ondersoek word. Die inligting sal gebruik word om drempelwaardes te verkry teen watter vlakke beheer toegepas moet word en geskikte beheermetodes sal ondersoek word.

Tradisioneel word vlakke van mikroskerotia in ‘n betrokke grondmonster bereken deur middel van kunsmatige groeimedia en verskillende sifmetodes van die grondmonster oor die groeimedia. Volgends hierdie tegniek word elke mikrosklerotium wat ontkiem op die groeimedium getel en so word bereken wat die vlakke in die oorspronklike grondmonster was. Die tegniek neem egter baie lank omdat die kulture baie stadig groei en gedurende die sifprosesse kan van die mikrosklerotia verlore gaan wat lei tot foutiewe resultate. Boonop word minder aggresiewe patogene soos V. tricorpus ook verkeerdelik getel met die tegniek.

Met die moderne tegnologie bestaan daar nou baie meer akkurate prosesse wat vinnig die hoeveelheid mikrosklerotia in ‘n betrokke grondmonster kan kwantifiseer. Hierdie tegniek behels die ekstraksie van die DNS (deoksiribonukleïensuur) van die V. dahliae uit die grondmonster en die DNS word dan met die hoeveelheid mikrosklerotia gekorreleer. Sodoende kan daar, deur middel van ‘n DNS ekstraksie en ‘n daaropvolgende tegniek, bekend as ‘n kwantitatiewe intydse PKR, bepaal presies wat die vlakke van mikrosklerotia per grondmonster is. Presies dieselfde tegniek kan gebruik word met aalwurms waar hierdie meer moderne tegniek ook geïmplementeer kan word om te kwantifiseer hoeveel aalwurms van ‘n spesifieke genus soos Pratylenchus in ‘n betrokke grondmonster teenwoordig is. Hierdie kwantifiseringstegniek kan in die tamatielande geïmplementeer word deur verskeie grondmonsters te versamel en die vlakke van V. dahliae en Pratylenchus spesies te bepaal en te koppel met die hoeveelheid verwelking wat ontwikkel in die land en die invloed wat dit op die oes het. So kan drempelwaardes vir siekte ontwikkel en oesverliese kan dan bepaal word deur ook omgewingsfaktore soos grond tipe, klimaat en ander wat ? rol speel in siekte-ontwikkeling in ag te neem.

Sodra ‘n drempelwaarde ontwikkel is, is daar ‘n beter aanduiding van wanneer dit nodig is vir beheer om toegepas te word in ‘n betrokke land en met die kwantifiseringstegniek kan die betrokke beheermetode ook vir effektiwiteit getoets word, deurdat daar bepaal kan word of die hoeveelheid mikrosklerotia afneem na ‘n spesifieke beheermetode. Omdat die betrokke veroorsakende organismes van die siekte in die grond voorkom, is daar geen chemiese blaarbespuitings wat die siekte sal beheer nie, en dus is voorplant grondberoking met chemiese stowwe, soos metielbromied, metam sodium en mengsels van chloropikrien en 1,3-dichloropropeen, baie in die verlede gebruik om die siekte te beheer. Chemiese grondberoking is egter baie skadelik vir die omgewing en daar is altyd ‘n gesondheidsrisiko daaraan verbonde wanneer die middel toegedien word. Verder is dit dikwels nie ? koste effektiewe beheermaatreël in oopland tamatieproduksie nie.

Beheermetodes wat gedurende hierdie studie oorweeg word, fokus egter baie op grondgesondheidheid en volhoubare landboutegnieke, naamlik anaerobiese grond disinfestasie. Hierdie metode behels die inwerk van maklik afbreekbare organiese materiaal in die grond wat dan met plastiek bedek word. Anaerobiese toestande word in die grond geskep deurdat die grond natgemaak word tot veldwaterkapasiteit voordat dit met die plastiek bedek word. Gedurende die anaerobiese toestand is daar ‘n verskeidenheid van reaksies wat in die grond kan plaasvind. Die organiese materiaal kan afgebreek word en ‘n toksiese vlugstof vrystel wat die mikrosklerotia of doodmaak of ontkieming daarvan inhibeer.

Nog ‘n reaksie wat kan plaasvind, is gevind, dat die toediening van organiese materiaal ook die mikrobiese populasie in die grond verander en in sommige gevalle kan daar ‘n toename van organismes wees wat na-tuurlike vyande van V. dahliae is. Hierdie tegniek is nog nie op Verticillium verwelk van tamaties getoets nie, maar wel op ander gewasse en baie suksesvolle resultate is verkry.

Ensuring a smooth ride

Ensuring a smooth ride

Potholes and other road hazards are not only the bane of motorists’ lives; tomatoes, too, suffer when they are transported across rough surfaces over long distances.

Tomatoes are one of the consumers’ favourite foods. According to the Food and Agriculture Organization of the United Nations (FAO), it is the second most widely cultivated fruit in the world. Tomatoes are also good for us because of their high levels of antioxidant compounds.

Although South African tomatoes are largely grown for domestic consumption, their road to market is not a smooth one. The way they are handled once they’ve been harvested is the greatest hazard to the quality and shelf life of tomatoes.

Post-harvest losses are caused by mechanical injuries, inadequate storage, unsuitable handling and transport, and the length of time they are left on display in retail outlets.

The physical damage they suffer as a result may cause metabolic and physiological changes that negatively impact on flavour, smell and firmness. Physical damage may also significantly affect the chemical and physical composition of the pericarp and ocular tissue of tomatoes.

The incidence and severity of damage suffered depend on the impact energy, number of impacts, cultivar and ripening stage, all of which adds up to a tomato’s post-harvest life.

It stands to reason, therefore, that better management of transport logistics as well as handling practices between field and consumer, should result in better quality tomatoes with a longer shelf life.

Technologies that have been developed to curb post-harvest losses include the use of 1-MCP to delay ripening, hot water rinsing and brushing to slow down decay, a short anoxia/hypoxia treatment to reduce decay at relatively high storage temperatures, and coating to reduce physiological deterioration.

Of all the potentially damaging activities, transport seems to be particularly troublesome in South Africa. The rural road network – on which most farmers depend – is in a poor state of repair, and tomatoes are reaching the market the worse for it. Not only do they suffer physical damage, but the time it takes to reach either the packhouse from the field or the market from the packhouse, often leaves the tomatoes for too long at storage temperatures that are not optimal.

Previous studies have noted that, depending on the harvest sites, tomatoes can travel up to 128km before removal of field heat starts; in certain instances, the situation is aggravated when the tomatoes are not transported to the packhouse as soon as they have been picked. From the packhouse, the tomatoes are commonly transported in non-refrigerated vehicles to fresh produce markets, representing a break in the cold chain.

Despite the fact that the post-harvest stresses that tomatoes are subjected to are well documented, there is no model that relates the damage incurred during transit to the shelf life of tomatoes. Having identified this gap, Prof. Tilahun Workneh, of the Department of Agricultural Engineering at the University of KwaZulu-Natal, secured PHI support for a study that would evaluate the quality losses in a South African tomato supply chain due to transportation and handling practices.

Project scope and objectives

The project scope covered post-harvest handling and road transport activities from the field to the fresh produce market.

The scope was broken down into seven objectives:

Measure and quantify the stresses and strains exerted on tomatoes during a range of transport conditions (speeds, packaging types, vehicle types, etc.).

Measure and quantify the route conditions followed in a typical tomato post-harvest logistics chain.

Empirically investigate the quality and shelf life of tomatoes delivered to the Pietermaritzburg fresh produce market via the various supply chain routes originating at the different ZZ2 packhouses in Limpopo.

Sample and test tomato quality attribute in situ at different points in the supply chain and from different positions in the bins in which they are transported. ZZ2 and an emerging farmer identified the sites for this part of the study.

Develop deterioration models that can be used to predict quality losses under different supply chain conditions.

Refine an existing model for the management of the transport logistics chain of post-harvest tomatoes to be relevant to South African conditions.

Develop integrated post-harvest treatments and handling methods to extend the shelf life of tomatoes.

Methodology

Tomatoes for analysis were sourced from ZZ2 farms in three regions of the Limpopo province. ZZ2 is South Africa’s single largest producer of tomatoes. Mohale Farming within the Letaba Municipality in Limpopo was the emerging farmer whose participation ensured that the data generated from the study would represent the full spectrum of tomato producers.

Two experimental trials, one during winter (June–July) and the other in summer (September–October), were carried out to cover the full growing season.

Accelerometers and pressure mats were used to measure the frequencies that tomatoes were exposed to while in transit. Road conditions were evaluated separately, along with the effect of road conditions on the vehicles used.

Harvested tomatoes at three maturity stages were transported over three supply roads, each in a different condition, to the Pietermaritzburg fresh produce market depot. From there they were transported to the laboratory and assigned different treatments under a completely randomised design. The treated tomatoes were stored under either ambient or controlled temperature (11°C) conditions for 30 days. During this time, the tomatoes’ firmness, colour, pH, titratable acidity, marketability, total soluble solids, total bacterial counts, electron microscopy imaging, sugar and bioactive compounds were measured and analysed

Additionally, seven post-harvest treatments, individually and in different combinations, were used on all the samples. These included biocontrol B13 coating, gum arabic coating, hot water treatment, chlorine and electrochemically active water (anolyte). Sampling was done at selected intervals, and data collected will be analysed and used to develop shelf life and quality models.

Biochemical and chemical analyses of the samples were carried out using high-performance liquid chromatography (HPLC) and spectrophotometric methods. In this case, the parameters analysed included sugar content, ascorbic acid content, and lycopene.

The infield experiment involved two handling conditions (bins and lugs), two periods to precooling (six and two hours), two storage conditions (controlled temperature and ambient) and two harvesting times (morning and afternoon), replicated on two farms that supplied tomatoes to two packhouses in Limpopo.

Results

In-transit pressures do affect the shelf life of tomatoes. The induced damage is a function of the road condition, the period of time tomatoes are exposed to certain frequencies and the packaging method. Given that tomatoes transported in bins ripened faster and had more structural damage than those transported in cartons, it is clear that packaging choices during transport offer an important avenue to mitigate post-harvest losses.

Post-harvest disinfection and coating treatments have a significant impact on the quality of tomatoes stored under both ambient and refrigerated temperatures. Treatments that combined surface decontamination and bio-coating resulted in the best shelf life and quality of pink and red tomatoes. Hot water treatment delivered the best results for tomatoes harvested at the green mature stage.

The summer season tomato samples ripened and deteriorated faster than those grown in winter, which is expected from a biochemical and microbiological perspective. The maximum shelf life for tomato samples supplied during winter was 32 days, compared to 24 days for the summer samples.

Why the project matters

Quantifying the impact that road surface quality has on the shelf life of tomatoes can help to determine transportation routes and incentivise/support the development of infrastructure.

An improved understanding of transport conditions and their impact on post-harvest damage can increase the productivity of the tomato industry.

An integrated approach to the post-harvest management of tomatoes can be achieved by combining treatment and handling best practices.

The study delivered information that both large-scale and emerging farmers can use to improve their post-harvest operations.

The quality deterioration model can be used as a tool to support decision-making in the tomato supply chain and may be adapted to other supply chains.

“When transported across rough surfaces over long distances, tomatoes may suffer physical damage resulting in metabolic and physiological changes that negatively impact on flavour, smell and firmness of the fruit.” – Prof. Tilahun Workneh

Copywriter: Charmain Lines